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Abstract

Standard spatial statistics involves exploratory data analysis (EDA) and the computation of a semi-variogram prior to kriging from spatial

data such as the finite strain data from a thrust sheet. However, the main shortcoming of this method is that uncertainties in the computation of

EDA and the semi-variogram parameters cannot be estimated; standard EDA allows the computation of the uncertainties associated with

only the sample mean. We use resampling statistics to overcome this and use previously published data from the Sheeprock thrust sheet in the

Sevier fold-and-thrust belt in western USA to illustrate Bootstrapped spatial statistics. The use of Bootstrapped spatial statistics in place of

standard spatial statistics also simplifies the computation of the best semi-variogram resulting in the computation of a more robust semi-

variogram. Kriging estimates obtained using the Bootstrapped semi-variogram indicate that the results are practically insensitive to the

uncertainty associated with the estimation of parameters of the semi-variogram used in the Sheeprock example.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The standard spatial data analysis (e.g. Matheron, 1963;

Cressie, 1993; Mukul, 1998) starts with exploratory data

analysis (EDA), which typically involves measures of

central tendency (such as mean, median, mode), measures

of dispersion (such as standard deviation from mean etc.),

symmetry (skewness) and peakedness (kurtosis) and their

graphical representation to test the behaviour of the data and

the underlying structure. Computation of a semi-variogram,

which is the key to the spatial statistics method, is carried

out next to decide how well a measurement represents

another location at a specific distance and direction. The

final step in the process is spatial prediction and kriging to

estimate the studied spatial variable from unsampled

locations in the sampled area using a weighted linear

combination of the available samples and the computed

semi-variogram in an unbiased manner after smoothing of

‘noise’ in the data set and declustering it. However, the

uncertainties associated with the EDA (except the sample

mean) and variogram parameters cannot be ascertained

using the standard spatial statistics method. Moreover, the

best semi-variogram for a given spatial data set can only be

ascertained by comparison of errors between measured and

estimated values of the studied spatial variable at different

reference points in the population by cross-validation after

kriging (Mukul, 1998). This requires that the entire kriging

analysis be carried out during each attempt at estimation of

the semi-variogram; this involves considerable compu-

tational time and labour in the estimation of the best

possible semi-variogram and is, therefore, not an efficient

approach.

This paper uses resampling statistics (Simon, 1969), later

termed the Bootstrap (Efron, 1979), and involves creation of

resampled Bootstrap sample sets from a measured base

dataset and treating them as multiple data sets (Diaconis and

Efron, 1983; Efron and Tibshirani, 1991) to compute

uncertainties in the EDA and semi-variogram parameters.

It also makes the semi-variogram computation more robust

and efficient, providing a distinct improvement over semi-

variogram computation using standard spatial statistics.

We illustrate this approach using previously published X/Z

strain data collected from 56 locations in a deformed volume

of rock (Mukul, 1998) from the Sheeprock thrust sheet

(Table 1) in the Provo salient of the Sevier fold-and-thrust
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belt (Fig. 1) in western United States. The strain ratios used

in this study are an example of spatial variables, which

require quantification of both location and magnitude. This

approach can work equally well with tensor-averaged strain

data (Brandon, 1995) where the Bootstrapped variogram

analysis could be applied to each of the six independent

components of the observed tensor.

2. Bootstrapped spatial data analysis

We estimate the semi-variogram prior to kriging by

introducing a couple of extra steps into the standard

procedure for the analysis of spatial data as carried out in

Mukul (1998) and Mukul and Mitra (1998). First, the base

data set (Table 1) is resampled using the Bootstrap

resampling technique (Diaconis and Efron, 1983; Efron

and Tibshirani, 1991). The name ‘Bootstrap’ refers to use of

the original data set X to generate new data sets Xp (Efron

and Tibshirani, 1991). This involves creating artificial data

subsets by randomly selecting elements from the original

data set. The selection is carried out with replacement, i.e.

the selected elements are replaced back into the base data set

and are available for the next selection. Each subset,

therefore, has the same number of elements as the original

set but is different because an individual element can be

chosen once, more than once, or not at all. Therefore, if the

original data set X contains X ¼ {a0, a1, a2,…,an} ¼ {ai,

i ¼ (0,n)}, the Bootstrap sample made from X denoted by

Xp ¼ {ap
0; ap

1; ap
2;…; ap

n} ¼ {ap
i ; i ¼ ð0; nÞ}, could be a

possible selection sequence in creating Xp from X. Each

ap
i is one of the original ai values, randomly selected (with

replacement). Thus, the selection sequence could read

ap
0 ¼ a6, ap

1 ¼ a0, ap
2 ¼ a1, etc. The Bootstrap random

sampling algorithm described above allows creation of

Bootstrap data files Xp
1, Xp

2, Xp
3 ,…,Xp

B. Thus:

A pseudo random number generator (PRNG) was used to

randomly sample from the base data set (Table 1). In a given

bootstep (B), the selection process was iterated 56 times to

get a Bootstrap data set containing the same number of data

elements as the original base data file (Table 1). A

maximum of 500 bootsteps were used to generate 500

Bootstrap data files.

The PRNG was chosen, in SGI IRISX6.5 Operating

System, such that its period was much larger than the total

number of random numbers in the sequence and both low

and high order bits of the random number expressed high

randomness. We used a non-linear additive feedback

random number generator that generated pseudo-random

numbers in the range from 0 to 231 2 1. The period or cycle

length of the generator is 34359738352 (16 times of

231 2 1) and is much higher than the total random numbers

required to generate the random sequence (56 £ 500 for 500

random file each of size 56 lines). Further, the non-linear

Table 1

Base data values: Sheeprock strain data (Mukul, 1998)

X (m) Y (m) X/Z ratio X-orientation Sequence #

810.000 3470.000 1.245000 300.0000 1

975.000 3640.000 1.180000 341.9900 2

1150.000 3830.000 1.325000 92.7500 3

1880.000 4600.000 1.302000 90.2000 4

2185.000 4850.000 1.233000 306.7300 5

125.000 2340.000 1.305000 322.5100 6

290.000 2530.000 1.301000 005.7000 7

495.000 2715.000 1.339000 147.3400 8

665.000 2920.000 1.375000 282.6900 9

1000.000 3295.000 1.225000 233.4000 10

1160.000 3495.000 1.222000 311.6200 11

1325.000 3655.000 1.163000 224.1400 12

1495.000 3855.000 1.067000 17.0600 13

2200.000 4560.000 1.285000 64.7000 14

2395.000 4760.000 1.127000 288.2000 15

335.000 2170.000 1.319000 180.4600 16

525.000 2370.000 1.220000 242.9000 17

695.000 2545.000 1.276000 244.9700 18

865.000 2745.000 1.260000 352.8000 19

1355.000 3300.000 1.226000 316.2300 20

1505.000 3495.000 1.351000 48.6100 21

1715.000 3670.000 1.127000 237.0600 22

1865.000 3855.000 1.230000 61.7200 23

2030.000 4055.000 1.270000 43.0700 24

2205.000 4210.000 1.400000 345.0600 25

2370.000 4375.000 1.318000 208.0200 26

550.000 2005.000 1.250000 173.8900 27

865.000 2395.000 1.196000 200.9200 28

1040.000 2600.000 1.357000 197.4500 29

1700.000 3325.000 1.243000 271.9700 30

2040.000 3695.000 1.149000 98.6000 31

2225.000 3870.000 1.303000 194.0400 32

2405.000 4055.000 1.219000 16.0300 33

2560.000 4165.000 1.143000 319.5100 34

725.000 1840.000 1.383000 152.9000 35

885.000 2040.000 1.301000 340.5500 36

1220.000 2400.000 1.356000 255.6400 37

2035.000 3340.000 1.160000 58.9900 38

925.000 1665.000 1.308000 123.2100 39

2065.000 2970.000 1.284000 318.3700 40

2420.000 3345.000 1.372000 154.1200 41

1115.000 1490.000 1.482000 70.1300 42

1265.000 1700.000 1.269000 131.9600 43

1440.000 1890.000 1.308000 199.9100 44

1775.000 2275.000 1.352000 71.8200 45

2410.000 2980.000 1.207000 181.4100 46

1465.000 1525.000 1.301000 237.7400 47

1625.000 1740.000 1.299000 188.6300 48

2785.000 3010.000 1.316000 324.2500 49

2965.000 3170.000 1.315000 001.5200 50

1525.000 1175.000 1.284000 289.6200 51

1655.000 1365.000 1.266000 317.4500 52

1985.000 1755.000 1.344000 341.0200 53

2645.000 2460.000 1.604000 257.3100 54

2815.000 2645.000 1.533000 43.0300 55

2980.000 2820.000 1.266000 141.5300 56
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additive feedback algorithm generated numbers with high

randomness in both low and high order bits. This

eliminated the risk of sequence repetition within the entire

sequence and consequent period sampling of same data

sequence. System time was used as the initial seed for the

generator.

2.1. Bootstrapped exploratory data analysis (BEDA)

BEDA aims to improve EDA computations by esti-

mating the uncertainties associated with each EDA

statistic as opposed to only the mean. Given a data set

X ¼ {a0, a1,…,an}, and ā to be its mean, the standard error

of mean ā or its root-mean-square error during EDA is

computed by:

Seð�aÞ ¼
Xn

i¼1

ai 2 �a
� �2
nðn 2 1Þ

( )1=2

ð1Þ

BEDA statistics can now be computed for each of the

files Xp
1, Xp

2,…,Xp
B. For any BEDA statistic t(Xp

b ; b ¼ 1,

2,…,B), we can compute the standard error of the

corresponding BEDA statistic t(Xp
b) by:

XB

b¼1

tðXp
bÞ2 �t

� �2
=BðB 2 1Þ

( )1=2

ð2Þ

Fig. 1. Simplified map of the Sevier fold-and-thrust belt in Idaho–Wyoming and northern Utah. The Sheeprock thrust sheet, from which the data used in this

study was collected, has been boxed. Symbols: SLC, Salt Lake City; TL, Tooele; PR, Provo; NP, Nephi.
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where t̄ is the average of the B Bootstrap replications t(Xp
b)

given as:

1

B

XB

b¼1

xpb ð3Þ

Here t(Xp
b) could be mean, median, mode, skewness or

peakedness in the context of BEDA. It has also been

established (Efron and Tibshirani, 1991) that a stable estimate

of Bootstrap standard error requires B , 200 and, therefore, at

least 200 Bootstrap files need to be analysed during BEDA.

BEDA results for the Sheeprock strain data (Table 1) are

given in Table 2. The errors fluctuated for initial bootsteps

(B) and stabilized beyond B $ 400. Results for B ¼ 500

have been tabulated in Table 2.

2.2. Bootstrapped semi-variogram computation

One of the most frequently cited problems with kriging is

the necessity of using an estimated model for the semi-

variogram function (Hardy, 1977; Armstrong, 1984; Philip

and Watson, 1986). Brooker (1986) pointed out that the

kriging variance is “robust to most errors likely to be made

in semi-variogram selections” except that it may be

sensitive to incorrect choice of the nugget value. This was

also confirmed by Armstrong (1984). However, there still

was a need to quantify the uncertainty associated with the

semi-variogram estimation. Chung (1984), Dubrule (1983)

and Campbell (1988) explored the use of resampling

techniques in geostatistics concluding that the distribution

of resulting Bootstrap estimates of the semi-variogram

parameters should approximate the corresponding true

distribution and thus provide a non-parametric way to

estimate uncertainties associated with the original estimator.

To estimate the Bootstrapped semi-variogram for the

Sheeprock strain data (Table 1), we need to determine the

uncertainties or standard errors associated with the par-

ameters a and c of the exponential semi-variogram function

in Eq. (6). Given X ¼ {a0, a1,…,an} and Bootstrap samples

Xp
1 , Xp

2 ,…,Xp
B from X, we estimated the semi-variogram

function (Eq. (6)) from each Xp
b , b ¼ 1, 2,…,B, where

B # 500, thereby computing B semi-variogram functions,

each with their own range (a) and sill (c) parameters. For a

given B, we computed the average of the ap and cp values

following the appropriate form of Eq. (3):

�a
p ¼

1

B

XB

b¼1

ap
b or �c

p ¼
1

B

XB

b¼1

cpb ð4Þ

The standard error of ap and cp for a given B was then

computed from an appropriate form of Eq. (1):

XB

b¼1

ðap
b 2 �apÞ2=BðB 2 1Þ

( )1=2

or

XB

b¼1

ðcpb 2 �c
pÞ2=BðB 2 1Þ

( )1=2
ð5Þ

Results of the above computation for B ¼ 500 are given

in Table 3. The sill value c becomes stable for B $ 300. The

range value, a, was more variable and was computed to be

759.32 ^ 33.99 for B ¼ 500. Given that the best semi-

variogram for the Sheeprock data, based on comparison of

errors between measured and estimated X/Z ratios at

different reference points in the population by cross-

validation after kriging (Mukul, 1998), was found to be an

exponential semi-variogram (g(lhl):

gðlhlÞ ¼ c 1 2 e
23lhl

a

� 	
ð6Þ

where c ¼ 0.008 and a ¼ 750, and h the separation vector

between sample locations, the Bootstrapped semi-vario-

gram was, therefore, re-computed to be:

gðlhlÞ ¼ ð0:0078 ^ 0:0004Þ 1 2 e
23lhl

ð759:32^33:99Þ

� 	
ð7Þ

This result is more robust than the Mukul (1998) result

given in Eq. (6) because uncertainties in the arbitrary

constants a and c have now been determined.

3. Kriging and cross-validation using Bootstrapped

variogram

We next use the Bootstrapped semi-variogram of Eq. (7)

to carry out kriging using the GEO-EAS 1.2.1 program

(Englund and Sparks, 1991) as in Mukul (1998). The

validity of the kriged results was also tested by cross-

validation as in Mukul (1998). First, the kriging and cross-

validation parameters in GEO-EAS 1.2.1 were fine-tuned to

improve the Mukul (1998) estimations further between the

25th and 75th percentiles of the distribution (Table 3, Column

2). Next, the sensitivity of the kriged results to the uncertainty

in the computation of the sill value (c ¼ 0.0078 ^ 0.0004) in

the Bootstrapped semi-variogram (Eq. (7)) was tested. This

was done by kriging and cross-validation using a ¼ 759.32

Table 2

DA and BEDA results for Sheeprock X/Z axial ratios (Table 1)

Statistical parameters Mean Median Mode Skewness Peakedness

EDA results (Mukul, 1998) 1.2832 ^ 0.0127 1.2845. Not possible 1.2870. Not possible 0.4726. Not possible 4.8335. Not possible

BEDA result (for B ¼ 500) 1.2839 ^ 0.0005 1.2866 ^ 0.0006 1.2921 ^ 0.0013 0.5685 ^ 0.0230 4.5355 ^ 0.0477
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and c ¼ 0.0082 and 0.0074 values in the semi-variogram

(Eq. (7)). The results (Table 3) reveal that kriged estimates

are not sensitive to the uncertainty in the estimation of the

sill value of the semi-variogram. Finally, the sensitivity of

the kriged results to the uncertainty in the computation of

the range (a ¼ 759.32 ^ 33.99) in the Bootstrapped semi-

variogram (Eq. (7)) was tested; kriging and cross-validation

with c ¼ 0.0078 and a ¼ 725.33 and 793.31 was carried

out. Results (Table 3) indicate that kriged estimates are

nearly insensitive to the uncertainty in the estimation of the

range of the semi-variogram as well.

4. Conclusions

Any experimental measurement of a physical quantity

and computations of mathematical parameters based on

them is subject to a certain amount of intrinsic random error

that needs to be characterized and quantified precisely in the

system being studied. The standard spatial statistics method

does not permit computation of uncertainties associated

with the EDA and semi-variogram parameters. Boot-

strapped spatial statistics allows computation of the

uncertainties associated with the EDA and semi-variogram

parameters and also makes the computation of the best

semi-variogram more efficient. Thus, the range (a) ¼ 750 m

and sill (c) ¼ 0.008 values associated with the best

exponential semi-variogram computed by Mukul (1998)

for the Sheeprock X/Z strain data was recomputed, using

Bootstrapped spatial statistics, to be 759.32 ^ 33.99 and

0.0078 ^ 0.0004, respectively. However, kriged estimates

computed using the Bootstrapped semi-variogram indicate

that the results are not sensitive to the uncertainty associated

with the estimation of parameters of the semi-variogram

used in the Sheeprock example. However, this might not be

the case always and kriged estimates need to be tested for

sensitivity to uncertainty associated with the semi-vario-

gram used. Therefore, the Bootstrap method of computing

EDA parameters and the best semi-variogram should be

used in the analysis of spatial data.
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